
THE NONISOTHERMAL OLIGOMER HARDENING REGIME 

A. Ya. Malkin and A. E. Teishev UDC 536.42 

We have established general quantitative relationships linking the magnitude 
of the induction period in isothermal and nonisothermal regimes of oligomer 
hardening for the case in which the nonisothermicity is determined by the 
kinetics of heat generation in the chemical reaction. 

The hardening of oligomers and oligomer-based compositions is a basic technological oper- 
ation in the manufacture of items out of hardened plastics. In this case, an important tech- 
nological characteristic of the material, governing its behavior during the treatment process, 
is its "viability," or the induction period, i.e., the time during which the material re- 
tains its fluidity, or in other words, the period of time until it reaches the gel point. 
Various conditional or objective methods exist for the determination of t*, but these, how- 
ever, yield uniquely defined results only in the isothermal regime. We are also aware of 
standardized methods for estimating the time during which fluidity is maintained (the length 
of time in the viscous-fluid state) which are applicable to the nonisothermal hardening re- 
gimes; however, these estimates are strongly dependent on the specific condition of process 
behavior and the relationship of these estimates to t*, found in the isothermal regime, re- 
mains indeterminate. 

It is the purpose of this paper to establish the general quantitative relationships which 
link the values of t*, measured in the isothermal regime, to the magnitudes of the induction 
period derived in the nonisothermal hardening regime. This task applies, in general, to oligo- 
mers, but pertains in equal measure to the nonisothermal vulcanization regimes for elastomers. 
In this connection, in this paper we study in considerable detail the release of heat governed 
by the kinetics of the chemical hardening reaction as the basic source of nonisothermicity. 

The initial relationships for the solution of the stated problem, i.e., first of all, 
the relationship between the induction period and temperature t*(T), which we will write in 
the usual manner by means of the Arrhenius equation 

t* (T) ~ B exp (U/RT), (1) 

and, second, the criterion of nonisothermal hardening. This criterion was presented in [I] 
in the form of a rule for the summation of the reactions occurring at various temperatures. 
In analogy with the familiar Bailey criterion for destruction under variable loads, it is 
written in the following manner: 

t~ dt 
= 1 .  (2) 

We can eliminate the constant B by combining Eqs. (i) and (2) and assuming that at some "ini- 
tial" temperature To, t* = to*. Then 

'* ,tt to* 
�9 , exp [U/RT (t)l exp (U/RTo) 

(3) 

or 

.I exp ([7 T) d~ = I, 
0 

(4) 
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Fig. i. Induction period as a function of certain parameters: 
initial reaction rate [I) ~0 = 0.i; II) i; III) i0], activation 
energy [i, 0 = i0; 2) 30; 3) 50] and the thermal effect of the 
reaction; the results are presented for kinetic equations of the 
first (a) and second (b) order. 

where t* = tn*/to *, shows the extent to which t* diminishes in the nonisothermal hardening 
regime relative to to*; the dimensionless time is also normalized to to*: E = t/t0*; the 
dimensionless temperature T = (T - T0)/T 0 depends on t; 0 = U/RT 0. The transition from (3) 
to (4) is valid if T ~ i. The variations in t range from 0 to i. 

Subsequently it becomes necessary to establish the law governing the change in T(t), 
and for this we have to ascertain the physical sources of the nonisothermicity, and in this 
connection we will then examine the adiabatic case. 

The most obvious source is external heating. In this event, we can specify the law gov- 
erning the change in temperature. In this simplest case (but not necessarily) this involves 
a linear rise in temperature over time: 

T : T 0 + a t ,  or ~ : ( a t $ / T 0 ) 7 .  (5 )  

I n  t h i s  c a s e ,  combined  c o n s i d e r a t i o n  o f  e x p r e s s i o n s  (4 )  and (5 )  l e a d s  t o  t h e  f o l l o w i n g  e q u a -  
t i o n  [2]: . . . . . .  

] ,  = I ln(1 + x), ( 6 )  
x 

where  x = 0 ( a t 0 * / T  0) = Uat0*/RT0 u i s  a d i m e n s i o n l e s s  p a r a m e t e r  which  d e t e r m i n e s  t h e  r e l a t i v e  
r o l e  o f  n o n i s o t h e r m i c i t y  in  t h e  r e d u c t i o n  o f  t h e  i n d u c t i o n  p e r i o d .  As i s  d e m o n s t r a t e d  by 
direct numerical estimates, the nonisothermal effects become significant when x > 0.i or 

> 0.1RT02/Ut0 *. 

The source of the second type of nonisothermicity is dissipative heating, caused by the 
release of heat at high strain rates in the hardening oligomer. The role of this factor has 
been analyzed in [3, 4]. Under certain simplifying assumptions, the nonisothermicity in this 
case leads to a change in t* in accordance with the same law as in (6), since the intensity 
of heat generation is constant, and in the absence of any removal of heat the temperature 
is the same as in relationship (5) and increases linearly. The coefficient ~ in this case 
exhibits the following physical sense: it is determined not by the external source, but by 
the intensity of deformation and is therefore expressed as ~ = T#/cp (~ is the intensity 
of heat generation). Consequently, in this case 

x = UZ~t~/cpRT~. ( 7 ) 
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Fig. 2. Comparison of calculated relationships de- 
rived by linearization of the kinetic equation (8) 
(a), and the exact solution (b) (0 = i0), and (c) 
(0 = 50) for various initial reaction rates [I) 
~0 = i; II) i0]. 

The experiment confirmed the validity of this approach to the determination of the physi- 
cal cause for the reduction in the induction period at high strain rates and its quantitative 
description by means of Eq. (6) [4]. Based on consideration of the relationship between tem- 
perature and the viscosity of the hardened oligomer, a number of refinements in the nature 
of the function t*(x) were examined in [5]. 

Let us now turn to the third source of heat generation, which is responsible for noniso- 
thermicity in the hardening of the oligomer, but previously not considered quantitatively 
in the literature, although it applies in general to the entire problem. We are dealing here 
with the heat of the chemical reaction. It may be quite significant, and we cannot neglect 
this factor, even in the absence of an external source or dissipation of the work due to the 
deformation. Within the framework of the stated problem, the basic task here is to deter- 
mine T(t). 

In order to calculate ~(t) we have to turn to the kinetics of the reaction. In order 
to make clear the process of our considerations, let us turn to two simple kinetic reaction 
equations, i.e., of first and second order. In this case, it is significant that noniso- 
thermicity leads not only to a reduction in t*, as follows directly from formula (2), but 
to an acceleration of the reaction itself. The initial first-order kinetic equation is writ- 
ten in the form 

= k (1 - -  ~ exp (--U/RT). (8) 

In the general case, the quantities U in formulas (i) and (8) may prove to be different, but 
this refinement is hardly of any significance for our subsequent evaluation and conclusions. 
Usually, we are dealing with identical or similar quantities. 

Let us write formula (8) in dimensionless variables: 

d~ 
d~ = k~ (1 - -  ~) exp [Uq~/(1 Jr  q~)], ( 9 )  

where k 0 = k exp (-U/RT0); g0 = k0t0*; q = Q/coTo- The relationship between ~ and T is rather 
obvious: 

_ T - - T o  _ Q ~ = ~ .  ( 1 0 )  
To cpTo 

The simultaneous examination of Eqs. (4), (9), and (i0) gives a solution for the stated prob- 
lem, which is expressed in the form of a relationship between t* and the dimensionless param- 
eters 0, q, and g0, i.e., it indicates the sensitivity of the reaction rate to the change 
in temperature (0), the quantities of evolved heat (9), and the initial reaction rate (g0)- 
Although a direct relationship exists betwen $ and t* (see Eq. (4)), it is expressed in rather 
complex fashion, so that our interest lies not in the determination of $ at the instant of 
gei, formation, but rather of the viability time, which is an important technological charac- 
teristic. The solution of the problem cannot be presented in quadratures, but it can be deter- 
mined experimentally. We present the results of the calculations in the following. 
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A fully analogous approach is possible if the real kinetics are described by another, 
more complex, equation, different from Eq. (8). As an example, let us examine the frequent- 
ly encountered case of the kinetic second-order equation, i.e., instead of formula (8) we 
write: 

= k (1 - -  ~)z exp (--  U/RT). 
(Zl) 

The s u b s e q u e n t  t r a n s f o r m a t i o n s  a r e  e q u i v a l e n t  t o  t h e  ones  above .  

F i g u r e  1 shows t h e  t h e o r e t i c a l  r e l a t i o n s h i p s  t * ( q )  f o r  v a r i o u s  v a l u e s  o f  0 and ~0 f o r  
k i n e t i c  e q u a t i o n s  (8)  and ( 1 1 ) .  We can s ee  f rom t h e  f i g u r e  t h a t  t h e  l a r g e r  t h e  m ag n i tude  
o f  t h e  a c t i v a t i o n  e n e r g y ,  t h e  more r a p i d  t h e  r e d u c t i o n  in  t h e  i n d u c t i o n  p e r i o d  as  t h e  t h e r -  
mal e f f e c t  i n c r e a s e s ,  which  i s  q u i t e  o b v i o u s  f rom t h e  p h y s i c a l  s t a n d p o i n t .  

I t  s h o u l d  be n o t e d  t h a t  f o r  b o t h  t y p e s  o f  k i n e t i c  e q u a t i o n s  t h e  c u r v e s  t * ( q )  a r e  q u i t e  
c l o s e ,  a l t h o u g h  t h e  d i v e r g e n c e  be tween  t h e s e  c u r v e s  i n c r e a s e s  as  t h e  i n i t i a l  r a t e  o f  r e a c t i o n  
i n c r e a s e s  ( t h u s ,  when ~0 = 0 .1  t h e  c u r v e s  b e in g  compared a r e  v i r t u a l l y  c o i n c i d e n t ,  w h i l e  in  
t h e  c a s e  o f  ~0 = 1 and ~0 = 10 t h e y  r ema in  s i g n i f i c a n t l y  d i f f e r e n t ) .  On t h e  w h o le ,  i t  may 
a p p a r e n t l y  be assumed t h a t  t h e  t y p e  o f  k i n e t i c  e q u a t i o n  p l a y s  no d e c i s i v e  r o l e .  The d e r i v e d  
r e s u l t s  d i v e r g e  most  c l e a r l y  i f  we compare  t h e  s e r i e s  o f  c u r v e s  I ,  I I ,  I I I  ( F i g .  1 ) :  t h e  
h i g h e r  t h e  i n i t i a l  r e a c t i o n  r a t e ,  t h e  more p r o n o u n c e d  t h e  e f f e c t  o f  i n d u c t i o n  p e r i o d  ( o r  v i a -  
b i l i t y )  r e d u c t i o n  o f  t h e  m a t e r i a l .  

When we u se  t h e  n u m e r i c a l  m e t h o d s ,  t h e r e  i s  no need  o f  l i n e a r i z i n g  t h e  e x p o n e n t i a l  r e l a -  
t i o n s h i p  be tween  ~ i n  f o r m u l a s  (8 )  and (11)  and t h e  t e m p e r a t u r e .  However ,  we a r e  i n t e r e s t e d  
in  t h e  e x t e n t  t o  which  such  a p r o c e d u r e  i s  v a l i d .  L e t  us  p r e s e n t  f o r m u l a  (8)  in  t h e  f o l l o w -  
ing  a p p r o x i m a t e  t e r m s :  

---- ko(1--~)(I  ~-?~), (12)  

where the dimensionless parameter y = UQ/cpRT0 2 in structure is quite analogous to the expres- 
sion for x, given by formula (7), if we assume that Q = Tit0*. The transition from Eq. (8) 
to formula (12) is valid for q << 1 and y < 1 (let us note that thesecond inequality is the 
stronger condition, since in actuality 0 > i). Equation (12) clearly shows that even if 
the kinetics of the reaction is described by a first-order equation, the release of heat re- 
sults in the nonisothermal self-acceleration effect that is represented by the cofactor 
(i + y~B). 

The integral in Eq. (12) has the form 

exp [(1 + 7) kot] - -  1 ~_-- 
exp [(1 -~ ?) kot] + ? 

Changing t o  d i m e n s i o n l e s s  v a r i a b l e s ,  f o r  t h e  f u n c t i o n  T ( t )  we o b t a i n  an a n a l y t i c a l  ex -  
p r e s s i o n  o f  t h e  form 

: ~  exp [(1 ~- Uq) kot]-- 1 
exp [(I + ~J~/) ~/'] %- [Jq ( 13 ) 

Having substituted expression (13) for T into Eq. (4), we can solve the stated problem. 
It should be noted that, in this case, [* for each fixed ~0 always depends on the product 
Uq, rather than on each of these parameters individually. In this connection, comparison 
of these solutions derived in the linearized case and in the exact formulation of the problem 
is clearly carried out in the coordinates [* -Uq. 

Figure 2 shows that the application of linearization yields virtually exact results when 
Uq ~ 0.7 for ~0 = i0 and with 0q ~ 1 for ~0 = i. For larger values of 0q, the divergence 
of the curves [*(Oq) becomes noticeable, i.e., the curve obtained for the linearized case 
deviates from the numerically calculated curves. Nevertheless, in actual practice the diver- 
gence of the curves for various values of 0 is not overly large, since the magnitude of q$ 
is generally smaller than I [see formula (9)], so that the linearization of the temperature 
relationship to the reaction rate is almost always correct. 

NOTATION 

t*, the induction period, or the time required to reach the gel point; tn* is the induc- 
tion period in the case of some arbitrary law governing the change in temperature; U, the 
activation energy of the hardening process; t, time; T o , the temperature at the onset of hard- 
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ening; to*, the induction period in the isothermal process; s the dimensionless induction 
period; t, dimensionless time; ~, dimensionless temperature; O, dimensionless activation 
energy; ~, the rate of temperature rise; ~, the shearing stress; ~, the shear rate; c, heat 
capacity; p, density; K, reaction rate; ~, rate of conversion; k0, initial reaction rate at 
the temperature T0; ~0, the dimensionless initial reaction rate at the temperature To; q, 
dimensionless characteristic of the thermal effect; Q, the thermal effect of the reaction. 
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THE MACROKINETICS OF DIFFUSION CONVERSIONS IN METALS 

WITH A DISPERSION PHASE 

Yu. A. Buevich and S. L. Komarinskii UDC 539.2:548.5 

The evolution of solid dispersions under isothermal conditions has been in- 
vestigated for the situation in which the exchange of the mass of discrete in- 
clusions with the matrix in which they are embedded is limited by the diffu- 
sion into that matrix. Expressions have been derived for the quantities which 
describe the kinetics of conversion and a comparison with experimental data 
is carried out. 

When heterogeneous metals and certain other types of solid materials are subjected to 
processes of chemical or heat treatment, their thermodynamic stability is disrupted. If 
the resulting level of metastability is sufficiently small, the consequent transition of 
the solid dispersion into a new stable state is not associated with the fluctuating formation 
of the nuclei of a new phase, but comes about as a result of the growth or dissolution of 
the initial inclusions. The speed with which this conversion takes place is determined not 
only by the kinetics of the interphase exchange, but also by the rates of impurity diffusion 
transport within the heterogeneous system being examined. Therefore, the evolution of the 
inclusions and the "transit" mass transfer to solid dispersion whose properties vary with 
the change in the dimensions and diffusion displacement of the inclusions must be taken into 
consideration simultaneously with consideration of the diffusion interaction of the inclusions 
and the effect exerted by proximity on the transport of the impurity through the spaces bet- 
ween the inclusions. 

A system of nonlinear equations has been formulated in [i] to describe the isothermal 
processes of diffusion conversion in solid local-monodisperse systems characterized by a 
uniform numerical concentration of spherical inclusions. This system determines the aver- 
age concentration of the diffusing impurity in each of the phases, as well as the volumetric 
concentration of the inclusions in the dispersion, and it also contains a number of quanti- 
ties which characterize the kinetics of the conversion and which, in rather complex fashion, 
depend on the physic,chemical parameters of the dispersion. This relationship is examined 
in considerable detail in the following for the case in which the exchange of impurities 
between the surfaces of the inclusions and the solid solution within the matrix is limited 
by the diffusion within the matrix, which is most important from the standpoint of applica- 
tion [2, 3]. 
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